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ABSTRACT

An equation of the K-dV type is derived for the study of nonlinear

surface waves under gravity with surface tension and edge constraints in a

4 channel of variable cross section. The approach used here is based upon a

nonlinear ray method. An example of a symmetric rectangular channel with

variable width is given.
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SIGNIFICANCE AND EXPLANATION

An equation of the K-dV type is derived for the study of nonlinear

surface waves under gravity with surface tension and edge constraints in a

channel of variable cross section. The approach used here is based upon a

nonlinear ray method. An example of a symmetric rectangular channel with

variable width is given.
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NONLINEAR CAPILLARY WAVES UNDER GRAVITY

WITH EDGE CONSTRAINTS IN A CHANNEL

N. C. Shen*

11.* INTRODUCTION

The dynamical problem of capillary waves on a liquid in a channel has not been much

studied in the past. The difficulty may lie in the fact that the edge condition at the

line of contact of the liquid free surface with the channel wall so far remains an open

problem. It is well known that for water at rest the contact angle at the edge of the free

surface is constant. However, when the surface is in motion, the edge condition depends

upon whether the channel wall is wetted or not and has to be determined as a part of the

solution to the free surface problem. In our study of capillary waves under gravity on a

viscous fluid in an inclined channel (Shih, 1973; Shen and Shih, 1974), we made the

assumption that the fluid velocity should be continuous at the line of contact. It follows

that the free surface elevation will remain zero if initially it is zero there. This

argument would seem to be plausible only for small amplitude waves. By a different

consideration the same edge condition was also used by Kopachevskii (1967).

in two recent papers by Benjamin and Scott (1979) and Benjamin (1981), the problem of

gravity-capillary waves with edge constraints on an inviscid. fluid has been investigated

both experimentally and theoretically. They considered a straight horizontal channel of

uniform cross section, and filled the channel with water up to the brim so that the edge

condition of zero surface elevation can be experimentally realized. in the former paper,

the linear problem was studied. In the latter, variational principles were formulated for

the full nonlinear equations as a Hamiltonian system and for waves of permanent type.

However, as pointed out by Benjamin (1961), a rigorous treatment of the nonlinear problem

is beyond reach at present. In this paper, we shall use a different approach to study a
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more general problem, that is, the channel is allowed to have a slowly varying cross

section. The main purpose of our work is to derive an equation of the K-dY type, which may

be used as an approximate equation for the investigation of long capillary waves with edge

constraints in a channel.

Our approach is based upon the nonlinear ray method developed in Shen and Keller

(1973). The basic ideas may be explained as follows. The motion of a wave front is

assumed to be determined by a phase function. It is found that the phase function

satisfies the Hamilton-Jacobi equation in geometrical optics, the solutions of which

determine a family of bicharacteristics called rays. An equation of the K-dV type is then

derived along the rays for the wave amplitude. In a report by Zhong and Shen (1982), we

specialized the procedure in Shen and Keller (1973) to the case of an incompressible

inviscid fluid without surface tension, and an equation of the K-dV equation for a channel

of variable cross section was derived. The present work is an extension of the previous

result and a host of problems, such as fission of solitons (Johnson, 1973; Zhong and Shen,

1982), shelf generation behind a solitary wave (Knickbocker and Newell, 1980) and others,

may be studied similarly by means of the equations derived here. However, this report is

self-contained, there is minimum reference to the previous report. We also note that our

method is related to those developed in Kuzmak (1959) and Choquet-Bruhat (1969).

We formulate the problem in 12. In 13 we derive an equation of the K-dV type for a

general channel. In 14 the example of a symetric rectangular channel with variable width

in considered to illustrate the method. Finally some discussions are given in IS.
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12. FORMULATION OF TllK POBLiM

We consider the notion of an inviscid, incompressible fluid of constant density with

surface tension in a channel with a smooth convex boundary defined by h*(x*,y,z*) - 0,

where z* is positive upward (Figure I). The lines of contact are two curves of

intersection of h* = 0 with the plane z* - d*• The governing equations are

x y *

ux + v *+ vu * wu, a -P* /P (2)

S* + U* + v'-. + wv. - -, /P.. (3)

,* + u'w* + v, * w.. - )- (4

subje t to the boundary conditions At

(5)n*, +(el,+fS)* '
P. + u', + n +. - w. -*0,

p'X - Yf,~1 * ; -** u1Y (1 y ~ ~ J
(6)

(1 2 2)-3/2

at h*(x*,yOs* , d4) = 0,

q* - de $ (7)

at h*(xy*,s*) 0 0.

-*h. + veh;. ,vh. -0. (8)
i50

Here (uv',w') is the velocity, to is the time, g' is the constant gravitational

acceleration, P* is the constant density, p* is the pressures 0 - ri s the equation

of the free surface and T* is the constant surfact tension coefficient. Within the

framework of long wave approximation, we "sum that the channel bottom varies slowly in

the longitudinal direction and the magnitude of the transverse velocities is much maller

than that of the longitudinal velocity. Under these assumptions, we introduce the

nondimensional variables

-3-
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Fiqure 1. *A cross section of the channel.



t - 3/2 t*/(K/g)1/ 2  (x,y,z) - (-3/ 2x4/H,g'/H,ze/H)

n - q*/H, h - h*/H, p - p*/(Pg)

(u,vv) - (u*/(gH)1 /2  a /2 v*/(gH)1/2 , B1l/2v*/(gH)1 /2 1

2 3/
T - */( 2, 3/2 - ,/H >> 1, d - d*/H

where LU are respectively the longitudinal and transverse length scales. In terms of

the unstarred variables, (1) to (8) become

u+ (vy + w) - 0 (9)

ut + uux + B(vuy +vu) -Px (10)

*vt 
+ uVx + 0(vuy + wu) -p , (11)

Vt + uw + O(vw + wvz ) - 2 (ps + 1)(12)
wt I m y (12)

I subject to the boundary conditiona:

At n - T(Xyt)
,: (13)

, 11tn + Ul + iO(Vn W ) - 0e

1p--(R Ti3lx1+ 1:1)+Ty(1 + 1 )2
" y

)

(14)

-201 3  q I(1 + 073n 2 + n2-3/2 I
zyxy x y

at h(x~y,z - d) - 0
(15)

n-d,

at h(xy,z) - 0

(16)
uhx + 0(vh + wh) - 0

Ly
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13. DERIVATION OF THE EUATION OF THE K-dV TYPE

We introduce a phase function S - S(t,x) and lot S - S. Assume that u,v,w,p and

nI also depend upon C and possess an asymptotic expansion of the form

'- -11 j-2x
e(C,t,x,y,z,9) - # O + 1 + ... , (17)

where 0 is given by

(UoVow0 1 ) - 0, p - -Z + d# io - d * (18)

Substitution of (17) in (9) to (16) will yield a sequence of equations and boundary

conditions. The equations for the first approximation are

kUlC + ly + WlZ " 0 (19)

4. + kplt - 0 , (20)

4- ply- " -Os" , (21)

subject to the boundary 
conditions

onI +v 0 (22)

Pl l Tql at z - d, -bl(X) y < b2 (x) , (23)

nl1 .0 at a w d, y - -blI,(x).b 2  , (24)

v Ilhy + Vh s - 0 at h - 0, (25)

where w -- t, k -x, and y - -bl(X), y - b a(x) are lines of contact. From (21), we

see that p1 , -P1 (t,xC). To solve (23), (24) for n,, let

nI1  V (Xy)pl , (26)

and V1 (x,y) satisfies

" ./T, -b < y b2 ,
lyy T1 "',

V1 - 0, y --bl1 b 2 •

It is easily found that the solution for VI  is

V 1 a1 - coshA(y - (b2 - bI)/2)]/cosh(jjb/2) (27)

where y - a1)1/2 and b - b + )b2 . We integrate (19) over a cross section D of the
T1

channel and make use of (20), (22) and (25) to obtain

-6-
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p, a(x)k2  2 b (Y)y) - 0
-b1

where a(x) is the area of the cross section. Suppose P14 0 0. Then we have

0/k - *(a/b(t - (2/vb)taanhb/2) / 2 - G(x) , (28)

which is in the form of Hamiton-Jacobi equatin in geometrical optics, and can be solved by

the method of characteristics. The characteristic equations are

dt/de - I, dx/dO - l d/dO - -kvGQ
(29)

do/do" a/40 - 0

where m is a proportionality factor. lhs solutions of (29) determine a one-parameter

family of bicheracteristLcs, called rays. as see from (29), both a and 8 are constant

along a ray. Let a a t In (31) and ftrm dt/dt - G(x) we obtain by integration the

equation of a ray

f LGz ) E tt.

where (t 0 1 x0 ) is the initial point of a ray. We may choose 0 - 0 and prescribe

a - -t on x- 0. Then

8 - -to -t J (G(C)l]dC ( (30)
0

it follows that

5 - 1, k 1 (G0 1 1 (31)

Needless to sayo other Oaoles of a am also possible.

The equations for the resand approximation are

ikOU2 +. V 2y + V 28 U. Ix 0 ( 32)

"%c kuu l *4 kP2 5  u l t (P 0 (33)

S2y - (34)

P2t 0 "NlI (35)

subject to the boundary conditions

-7-
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-4A12E k - w - Wlz n1 + n = 0 , (36)

P2 n 2 . -T(n l + n2yy) at z - d, -b < y < b 2  (37)

n - 0 at z - d, y - -bob2  (38)

v1¥ + wh, - -ulh x  at h = 0 * (39)

By differentiating (34), (35) with respect to y and z respectively, adding, and making

use of (19) and (20), we obtain

V2 -- 2  
. (40)

Then we differentiate (22) and (25) with respect to F and make use of (34) and (35) to

obtain

_ 02VlPlC at z- d, -b 1 < y < b 2  (41)

p h + hzh - 0 at h - 0 (42)

Let

p 2 " - *(txyZ)plg + A 2(
t 'x ' ) ( (43)

(40) to (42) imply

V2  k Ik2 in D, (44)

2z IV at - d, -b1 < y < b 2 , (45)

#yh + h - 0 at h - 0. (46)

y y z z

The Neumann problem posed by (44) to (46) is solvable as a consequence of (28). If we

assume ulvlw1 ,,P,,p tend to zero as C tends to infinity, it follows from (20), (34),

(35) and (43) that

(Ul"lvlw) W'
1 (kpl, "4y~' ZPI( (47)

Finally, we shall obtain a solution of n12 in terms of p1  and A2. From (26),

(37), (38) and (43), n12 satisfies

n1 - (1/T) - V p + (1/T)#(z - d)p - (1/TA , (48)
2yy '2 le+lt2

T -0 at z -d, y -blb 2  (49)

S-8-
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we expross 12 as

n V2 (x,y)p1  +V 1 A2  (50)

where V satisfies2

V - (1/T)V - -V 1 + (1/T)#(z - 8) , (51)2yy

V2 - 0 at y - -b1lb 2 . (52)

Now we are in a position to derive the equation of the K-dV type. From (32) and (33),

it follows that

v2y + '2z -(k/w)(kp 2 t + ku, + 'it + - u , (53)

we integrate (53) over a cross section D, make use of the divergence theorem, (20), (28),

(36), (39), (43), (47) and (50), and obtain

-(k/w)Pl f h.(h h2-/ 2 [-+(b2Pl 2
r , -b Itt 'p~+ 1 '2 t

1

+ k2 4'p 1 V p1  + - (z - d)V plp 1  + Vlp t]dy

f f (k/W)(k(-Ipl + A2 ) + k 2pipic
D

+ (k/W)pI t + p Ixdydz - D (kP I/(xdydz
D

By rearranging the terms, the above equation reduces to

m0plt + mlp1x + m2P1 + m3PIP1 C + m4pN t - 0 , (54)

which in our main result, where

.0 "2a(G)
-2 , .1 - 2a(G)

" I

m " -(G) -1 I h (h2 + h2 )1"/2 d, + a[(G)-1] (55)
r z

33 . 3ka(G)-3 + t-1 b2 # (z - d)Vly

-b y

-b1  D

-9-



f h(h 2 + hl)- 112 de is the line integral over the boundary of h - 0 in each cross
r Z

section (Figure 1), and (hxh ,h ) is in the outward normal direction. Along a ray we

let U - t and

d/dO - a/at + (dx/dt) a/at - a/at + G(x) 3/3t

In terms of 0, (54) becomes

.Oplo + + i3PlPlC + m4pl1 tC - 0 ( (56)

We may also use x as a variable along a ray, then (56) assumes the form

a Plx + m2P 1 + 3PIPlC + m4PNC - 0 . (57)

1

-10-
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14. A DUCTANGUIAR CKAIU WITH VARABIZ WIDTH

we consider a symetric rectangular channel with constant depth and variable vidth.

.ach cross section D of the channel is bounded by a - 0, x - 1, y - O(x), where

1(x) Is a smooth function satisfying 0 < A,1 4 A(x) 4 £,2 , and £1.1 2 are two

constants. The equations for #* (44) to (46), now become

V2 k 2  in D.

#*-1A I  at a - 0I.41,

y -0 at y - - (L, 0 < 2 < I

$3 0 at a - Of -4L < y <

Let *k%2/2. The # satisfies
V 2# _ 0. in D,

4s M -k 2 + 0Vv
1 , at s aI - y ,

*7 M oe at y -. A,10 0 < a < 1

* 0O, at u - 0, - < y( .

which my be solved by opearation of variables, where by (27)

v - I " - ooehay/oohit4 * (58)

and kW are assumed to be given by (31).

By symetry, we my consider the problem in 0 4 y 4 1 and prescribe the condition

#y - 0 at y -, 0 < s 1. It is easily found that

#*-k3s/24 + cosh was/Acon wy/A (9

n-%~ _ (_lln+1%,*2tanhV& /ln1lV2 + (nw/jL)2lsjnh nw/&j.) n b I

where AO is arbitrary and we choose A - - k2/2 + T. Next we proceed to find the

solution for V2 . From (51)0 (52), (51) and (59), we have

;i -11-
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22V 2yy P V 2  coahty/coshl + is2  A cosh ni/A o nly/f, -t< y < ,
n-1

V - 0 at y--II•
2

By sysmetry again, we may solve v 2  for the half interval 0 4 y 4 1 and prescribe

y2 a 0 at y-0. We find that

v - -1 tanht com csh py/( 2 p cosh UI + y sinh py/[2p cash pi]

- (60)
+ B ((-1)ncosh py/cosh put - coo nwy/1)

n 
n

where
B - p2A cah nW/ / [2 + (ni/I)2 1

n n

The expremmion for # and V2  given by (59) and (60) enable us to evaluate the

coefficients in (54) for a channel of constant depth but variable width. To be definite,

we choose the positive sign for G. It is obtained from (55) that

so - 410[ - (1/p1)tanh US] ,

a, - 21(1 - (/p)tanh L) 11/2

• , 2 - (1/2)d a /dX ,

m3 - 6kl[1 - (1/1jl)tanb P-91

+ I (4anl/(p 312 )(1 + (nW/J9p) 2 ]' 2 tanhl2ml tanh nw/,
n-1

34 - -(21 2 k3 /3)(1 - (1/u,)tanh USI 1/2

+ ("jL/Pllltmhl2 U - 1) + ( )/031tank US

+ (63m2 /nwl[p 2 + (n/9) 2 1" 2 tanh tat

": n-1

Here ve keep k and w in m3 and m4 since other choices of 8 are also possible. We

also remark in passing that all termwnie differentiations and integrations needed in the

derivation of so to m4  can be justified vithout difficulty, and 4 is independent of

the arbitrary coefficient A0  in 4 because of (28).

-12-
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is. DISCUSSION

We observe from the Hamilton-Jacobi equation (28) that the surface tension of the

liquid has the apparent effect of reducing the width and increasing the mean depth of the

channel. Therefore, the group velocity of a capillary wave is always greatr than that of a

surface wave without surface tension, and is an increasing function of the nondimensional

surface tension coefficient T. One solution for (28) is given in (30). On the other

hand, we may prescribe B = x at t - 0. Then S is determined implicitly by

fx (G(C d; = t.

in this case,

W = G(S), k - G(S)/G(x)

The disadvantage of determining 8 implicitly may be compensated by the fact that the

initial condition for (54) at t - 0 can be directly expressed in terms of 0 w -S.

Certainly one can also solve (28) by prescribing data on any simple smooth ctirve

G 8 to - t0 (s), x0 - x0 (), in the t,x-plane where we my identify S with s. Then

a satiefLe

(K )' - t-t0s

0(8)

It Is shown that the rays do not intersert each other if G has no characteristic

direction.

We my derive the so-called Green's law (Lamb, 1932) for the change of wave amplitude

as follows. If we linearized the governing equations, and applied the ray method (Keller

(1956), we would obtain from (56)

a 1PIx + 1 2P1 - 0

along a ray. Therefore,

P,- (pI) 0 exp[- f (m2/ml)dC]x0

where (p 1 )0  is the initial value of p1 , and by (26)

-13-
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- I (x'y)(P1 0exp[" f (m2/m1 )dJJ (60)

We note that plu1l should be interpreted respectively as the wave amplitude of the first

order pressure and surface elevation. The exponential in (60) Vill be called the

amplification factor. he seon from (55), m2  and a, do not depend upon the solution *
of the Neumann problemn posed by (44) to (44), and can always be determined for a given

channel. For a rectangular channel with variable width b(x) and depth d(x), it is found

that

1 M Vl(xy)(pl)o[b(1 - (1/oab)tanh ub/2)l1/
2 d-1 /4

We see that the amplification factor is always greater for a surface wave with surface

tension.

If the channel has a uniform cross section, then h. - (0')x - 0 and from (5)

m2 - 0, and all other coefficients are constant. Furthermore, the rays are straight

lines and given by G'x - t - constant. We obtain from (SO) that

mPIG* + I3 , + *4PlCCU - 0

from which expressions for progressive waves of permanent type can be found. Finally if

T tends to sero, that is, V tends to Infinity, (5) reduce to those obtained in Zhong

and Ihen (1962) for waves without surface tension.
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